4.15.33 (xx2+y(x)2)y(x)=y(x)

ODE
(xx2+y(x)2)y(x)=y(x) ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 0.0447243 (sec), leaf count = 52

{{y(x)ec12ec12x},{y(x)ec12ec12x}}

Maple
cpu = 0.062 (sec), leaf count = 18

{_C1+x+x2+(y(x))2=0} Mathematica raw input

DSolve[(x - Sqrt[x^2 + y[x]^2])*y'[x] == y[x],y[x],x]

Mathematica raw output

{{y[x] -> -(E^(C[1]/2)*Sqrt[E^C[1] - 2*x])}, {y[x] -> E^(C[1]/2)*Sqrt[E^C[1] - 2
*x]}}

Maple raw input

dsolve((x-(x^2+y(x)^2)^(1/2))*diff(y(x),x) = y(x), y(x),'implicit')

Maple raw output

-_C1+x+(x^2+y(x)^2)^(1/2) = 0