4.15.34 x(1x2y(x)2)y(x)=y(x)

ODE
x(1x2y(x)2)y(x)=y(x) ODE Classification

[`y=_G(x,y')`]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 1.13682 (sec), leaf count = 40

Solve[c1+ilog(2(x2y(x)2iy(x))x)=y(x),y(x)]

Maple
cpu = 0.283 (sec), leaf count = 27

{y(x)arctan(y(x)1x2(y(x))2)_C1=0} Mathematica raw input

DSolve[x*(1 - Sqrt[x^2 - y[x]^2])*y'[x] == y[x],y[x],x]

Mathematica raw output

Solve[C[1] + I*Log[(2*((-I)*y[x] + Sqrt[x^2 - y[x]^2]))/x] == y[x], y[x]]

Maple raw input

dsolve(x*(1-(x^2-y(x)^2)^(1/2))*diff(y(x),x) = y(x), y(x),'implicit')

Maple raw output

y(x)-arctan(1/(x^2-y(x)^2)^(1/2)*y(x))-_C1 = 0