[[_1st_order, _with_linear_symmetries], _dAlembert]
Book solution method
Homogeneous equation
Mathematica ✓
cpu = 1.22711 (sec), leaf count = 429
Maple ✓
cpu = 0.061 (sec), leaf count = 35
DSolve[x*y[x]*(x + Sqrt[x^2 - y[x]^2])*y'[x] == x*y[x]^2 - (x^2 - y[x]^2)^(3/2),y[x],x]
Mathematica raw output
{{y[x] -> -(Sqrt[2]*Sqrt[x^2*(-1 + C[1]) - Sqrt[2]*Sqrt[-(x^4*(-1 + C[1] - Log[x
]))] - x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sqrt[x^2*(-1 + C[1]) - Sqrt[2]*Sqrt[-(x^4
*(-1 + C[1] - Log[x]))] - x^2*Log[x]]}, {y[x] -> -(Sqrt[2]*Sqrt[x^2*(-1 + C[1])
+ Sqrt[2]*Sqrt[-(x^4*(-1 + C[1] - Log[x]))] - x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sq
rt[x^2*(-1 + C[1]) + Sqrt[2]*Sqrt[-(x^4*(-1 + C[1] - Log[x]))] - x^2*Log[x]]}, {
y[x] -> -(Sqrt[2]*Sqrt[-(x^2*(1 + C[1])) - Sqrt[2]*Sqrt[x^4*(1 + C[1] - Log[x])]
+ x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sqrt[-(x^2*(1 + C[1])) - Sqrt[2]*Sqrt[x^4*(1
+ C[1] - Log[x])] + x^2*Log[x]]}, {y[x] -> -(Sqrt[2]*Sqrt[-(x^2*(1 + C[1])) + Sq
rt[2]*Sqrt[x^4*(1 + C[1] - Log[x])] + x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sqrt[-(x^2
*(1 + C[1])) + Sqrt[2]*Sqrt[x^4*(1 + C[1] - Log[x])] + x^2*Log[x]]}}
Maple raw input
dsolve(x*y(x)*(x+(x^2-y(x)^2)^(1/2))*diff(y(x),x) = x*y(x)^2-(x^2-y(x)^2)^(3/2), y(x),'implicit')
Maple raw output
1/2/x^2*y(x)^2-1/x*(x^2-y(x)^2)^(1/2)+ln(x)-_C1 = 0