4.15.36 xy(x)(x2y(x)2+x)y(x)=xy(x)2(x2y(x)2)3/2

ODE
xy(x)(x2y(x)2+x)y(x)=xy(x)2(x2y(x)2)3/2 ODE Classification

[[_1st_order, _with_linear_symmetries], _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 1.22711 (sec), leaf count = 429

{{y(x)22x4(c1log(x)1)+(c11)x2x2log(x)},{y(x)22x4(c1log(x)1)+(c11)x2x2log(x)},{y(x)22x4(c1log(x)1)+(c11)x2x2log(x)},{y(x)22x4(c1log(x)1)+(c11)x2x2log(x)},{y(x)22x4(c1log(x)+1)(c1+1)x2+x2log(x)},{y(x)22x4(c1log(x)+1)(c1+1)x2+x2log(x)},{y(x)22x4(c1log(x)+1)(c1+1)x2+x2log(x)},{y(x)22x4(c1log(x)+1)(c1+1)x2+x2log(x)}}

Maple
cpu = 0.061 (sec), leaf count = 35

{(y(x))22x21xx2(y(x))2+ln(x)_C1=0} Mathematica raw input

DSolve[x*y[x]*(x + Sqrt[x^2 - y[x]^2])*y'[x] == x*y[x]^2 - (x^2 - y[x]^2)^(3/2),y[x],x]

Mathematica raw output

{{y[x] -> -(Sqrt[2]*Sqrt[x^2*(-1 + C[1]) - Sqrt[2]*Sqrt[-(x^4*(-1 + C[1] - Log[x
]))] - x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sqrt[x^2*(-1 + C[1]) - Sqrt[2]*Sqrt[-(x^4
*(-1 + C[1] - Log[x]))] - x^2*Log[x]]}, {y[x] -> -(Sqrt[2]*Sqrt[x^2*(-1 + C[1]) 
+ Sqrt[2]*Sqrt[-(x^4*(-1 + C[1] - Log[x]))] - x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sq
rt[x^2*(-1 + C[1]) + Sqrt[2]*Sqrt[-(x^4*(-1 + C[1] - Log[x]))] - x^2*Log[x]]}, {
y[x] -> -(Sqrt[2]*Sqrt[-(x^2*(1 + C[1])) - Sqrt[2]*Sqrt[x^4*(1 + C[1] - Log[x])]
 + x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sqrt[-(x^2*(1 + C[1])) - Sqrt[2]*Sqrt[x^4*(1 
+ C[1] - Log[x])] + x^2*Log[x]]}, {y[x] -> -(Sqrt[2]*Sqrt[-(x^2*(1 + C[1])) + Sq
rt[2]*Sqrt[x^4*(1 + C[1] - Log[x])] + x^2*Log[x]])}, {y[x] -> Sqrt[2]*Sqrt[-(x^2
*(1 + C[1])) + Sqrt[2]*Sqrt[x^4*(1 + C[1] - Log[x])] + x^2*Log[x]]}}

Maple raw input

dsolve(x*y(x)*(x+(x^2-y(x)^2)^(1/2))*diff(y(x),x) = x*y(x)^2-(x^2-y(x)^2)^(3/2), y(x),'implicit')

Maple raw output

1/2/x^2*y(x)^2-1/x*(x^2-y(x)^2)^(1/2)+ln(x)-_C1 = 0