4.15.37 (xy(x)2y(x)2x2)y(x)=y(x)(xy(x)2x2+1)

ODE
(xy(x)2y(x)2x2)y(x)=y(x)(xy(x)2x2+1) ODE Classification

[NONE]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 3.75411 (sec), leaf count = 35

Solve[2tan1(xy(x)2x2)+x2+y(x)2=2c1,y(x)]

Maple
cpu = 0.413 (sec), leaf count = 73

{12(2xln(2x2+2x2(y(x))2x2y(x))+(x2+(y(x))22_C1)x22xln(x))1x2=0} Mathematica raw input

DSolve[(x - y[x]^2*Sqrt[-x^2 + y[x]^2])*y'[x] == y[x]*(1 + x*Sqrt[-x^2 + y[x]^2]),y[x],x]

Mathematica raw output

Solve[x^2 + 2*ArcTan[x/Sqrt[-x^2 + y[x]^2]] + y[x]^2 == 2*C[1], y[x]]

Maple raw input

dsolve((x-y(x)^2*(y(x)^2-x^2)^(1/2))*diff(y(x),x) = (1+x*(y(x)^2-x^2)^(1/2))*y(x), y(x),'implicit')

Maple raw output

1/2*(2*x*ln((-2*x^2+2*(-x^2)^(1/2)*(y(x)^2-x^2)^(1/2))/y(x))+(x^2+y(x)^2-2*_C1)*
(-x^2)^(1/2)-2*x*ln(x))/(-x^2)^(1/2) = 0