4.15.38 (xx2+y(x)2+1y(x)(x2+y(x)2))y(x)=x2+y(x)2+1y(x)+x(x2+y(x)2)

ODE
(xx2+y(x)2+1y(x)(x2+y(x)2))y(x)=x2+y(x)2+1y(x)+x(x2+y(x)2) ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 0.126706 (sec), leaf count = 27

Solve[x2+y(x)2+1+tan1(xy(x))=c1,y(x)]

Maple
cpu = 0.167 (sec), leaf count = 27

{arctan(y(x)x)1+x2+(y(x))2_C1=0} Mathematica raw input

DSolve[(-(y[x]*(x^2 + y[x]^2)) + x*Sqrt[1 + x^2 + y[x]^2])*y'[x] == x*(x^2 + y[x]^2) + y[x]*Sqrt[1 + x^2 + y[x]^2],y[x],x]

Mathematica raw output

Solve[ArcTan[x/y[x]] + Sqrt[1 + x^2 + y[x]^2] == C[1], y[x]]

Maple raw input

dsolve((x*(1+x^2+y(x)^2)^(1/2)-y(x)*(x^2+y(x)^2))*diff(y(x),x) = x*(x^2+y(x)^2)+y(x)*(1+x^2+y(x)^2)^(1/2), y(x),'implicit')

Maple raw output

arctan(y(x)/x)-(1+x^2+y(x)^2)^(1/2)-_C1 = 0