[[_1st_order, _with_linear_symmetries]]
Book solution method
Exact equation, integrating factor
Mathematica ✓
cpu = 0.126706 (sec), leaf count = 27
Maple ✓
cpu = 0.167 (sec), leaf count = 27
DSolve[(-(y[x]*(x^2 + y[x]^2)) + x*Sqrt[1 + x^2 + y[x]^2])*y'[x] == x*(x^2 + y[x]^2) + y[x]*Sqrt[1 + x^2 + y[x]^2],y[x],x]
Mathematica raw output
Solve[ArcTan[x/y[x]] + Sqrt[1 + x^2 + y[x]^2] == C[1], y[x]]
Maple raw input
dsolve((x*(1+x^2+y(x)^2)^(1/2)-y(x)*(x^2+y(x)^2))*diff(y(x),x) = x*(x^2+y(x)^2)+y(x)*(1+x^2+y(x)^2)^(1/2), y(x),'implicit')
Maple raw output
arctan(y(x)/x)-(1+x^2+y(x)^2)^(1/2)-_C1 = 0