4.18.1 xy(x)2+y(x)=y(x)

ODE
xy(x)2+y(x)=y(x) ODE Classification

[_rational, _dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 1.23018 (sec), leaf count = 32

Solve[{x=c1K$1057+log(K$1057)(K$10571)2,K$10572x+K$1057=y(x)},{y(x),K$1057}]

Maple
cpu = 0.018 (sec), leaf count = 39

{[x(_T)=_T+ln(_T)+_C1(_T1)2,y(_T)=_T(_Tln(_T)+1+(_C12)_T)(_T1)2]} Mathematica raw input

DSolve[y'[x] + x*y'[x]^2 == y[x],y[x],x]

Mathematica raw output

Solve[{x == (-K$1057 + C[1] + Log[K$1057])/(-1 + K$1057)^2, K$1057 + K$1057^2*x 
== y[x]}, {y[x], K$1057}]

Maple raw input

dsolve(x*diff(y(x),x)^2+diff(y(x),x) = y(x), y(x),'implicit')

Maple raw output

[x(_T) = 1/(_T-1)^2*(-_T+ln(_T)+_C1), y(_T) = _T*(_T*ln(_T)+1+(_C1-2)*_T)/(_T-1)
^2]