4.18.2 xy(x)2+2y(x)y(x)=0

ODE
xy(x)2+2y(x)y(x)=0 ODE Classification

[_rational, _dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 13.296 (sec), leaf count = 34

Solve[{x=c12K$1206+2log(K$1206)(K$12061)2,K$1206(K$1206x+2)=y(x)},{y(x),K$1206}]

Maple
cpu = 0.017 (sec), leaf count = 42

{[x(_T)=2_T+2ln(_T)+_C1(_T1)2,y(_T)=_T(2_Tln(_T)+2+(_C14)_T)(_T1)2]} Mathematica raw input

DSolve[-y[x] + 2*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

Solve[{x == (-2*K$1206 + C[1] + 2*Log[K$1206])/(-1 + K$1206)^2, K$1206*(2 + K$12
06*x) == y[x]}, {y[x], K$1206}]

Maple raw input

dsolve(x*diff(y(x),x)^2+2*diff(y(x),x)-y(x) = 0, y(x),'implicit')

Maple raw output

[x(_T) = 1/(_T-1)^2*(-2*_T+2*ln(_T)+_C1), y(_T) = _T*(2*_T*ln(_T)+2+(_C1-4)*_T)/
(_T-1)^2]