[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 1.03203 (sec), leaf count = 180
Maple ✓
cpu = 0.021 (sec), leaf count = 29
DSolve[-y[x] + x*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[(x*(-1 + Sqrt[1 + (4*y[x])/x])*(-1 + Log[-1 + Sqrt[1 + (4*y[x])/x]]*(-1 +
Sqrt[1 + (4*y[x])/x])))/(-4*y[x] + 2*x*(-1 + Sqrt[1 + (4*y[x])/x])) == C[1] + L
og[x]/2, y[x]], Solve[Log[x]/2 + (x*(1 + Sqrt[1 + (4*y[x])/x])*(1 + Log[1 + Sqrt
[1 + (4*y[x])/x]]*(1 + Sqrt[1 + (4*y[x])/x])))/(2*(x + 2*y[x] + x*Sqrt[1 + (4*y[
x])/x])) == C[1], y[x]]}
Maple raw input
dsolve(x*diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = exp(1/_T)/_T^2*_C1, y(_T) = 1/_T*(_T+1)*exp(1/_T)*_C1]