4.18.5 xy(x)2+xy(x)y(x)=0

ODE
xy(x)2+xy(x)y(x)=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 1.03203 (sec), leaf count = 180

{Solve[x(4y(x)x+11)((4y(x)x+11)log(4y(x)x+11)1)2x(4y(x)x+11)4y(x)=c1+log(x)2,y(x)],Solve[x(4y(x)x+1+1)((4y(x)x+1+1)log(4y(x)x+1+1)+1)2(x4y(x)x+1+2y(x)+x)+log(x)2=c1,y(x)]}

Maple
cpu = 0.021 (sec), leaf count = 29

{[x(_T)=e_T1_C1_T2,y(_T)=(_T+1)e_T1_C1_T]} Mathematica raw input

DSolve[-y[x] + x*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[(x*(-1 + Sqrt[1 + (4*y[x])/x])*(-1 + Log[-1 + Sqrt[1 + (4*y[x])/x]]*(-1 +
 Sqrt[1 + (4*y[x])/x])))/(-4*y[x] + 2*x*(-1 + Sqrt[1 + (4*y[x])/x])) == C[1] + L
og[x]/2, y[x]], Solve[Log[x]/2 + (x*(1 + Sqrt[1 + (4*y[x])/x])*(1 + Log[1 + Sqrt
[1 + (4*y[x])/x]]*(1 + Sqrt[1 + (4*y[x])/x])))/(2*(x + 2*y[x] + x*Sqrt[1 + (4*y[
x])/x])) == C[1], y[x]]}

Maple raw input

dsolve(x*diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0, y(x),'implicit')

Maple raw output

[x(_T) = exp(1/_T)/_T^2*_C1, y(_T) = 1/_T*(_T+1)*exp(1/_T)*_C1]