4.18.4 xy(x)2+4y(x)2y(x)=0

ODE
xy(x)2+4y(x)2y(x)=0 ODE Classification

[_rational, _dAlembert]

Book solution method
No Missing Variables ODE, Solve for x

Mathematica
cpu = 30.997 (sec), leaf count = 40

Solve[{K$1655x+4=2y(K$1655)K$1655,y(x)=K$1655(c1K$1655+4K$1655log(K$1655)+8)(K$16552)2},{y(x),K$1655}]

Maple
cpu = 0.019 (sec), leaf count = 43

{[x(_T)=4_T+8ln(_T)+_C1(2+_T)2,y(_T)=_T(8_Tln(_T)+16+(_C116)_T)2(2+_T)2]} Mathematica raw input

DSolve[-2*y[x] + 4*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

Solve[{4 + K$1655*x == (2*y[K$1655])/K$1655, y[x] == (K$1655*(8 + K$1655*C[1] + 
4*K$1655*Log[K$1655]))/(-2 + K$1655)^2}, {y[x], K$1655}]

Maple raw input

dsolve(x*diff(y(x),x)^2+4*diff(y(x),x)-2*y(x) = 0, y(x),'implicit')

Maple raw output

[x(_T) = 1/(-2+_T)^2*(-4*_T+8*ln(_T)+_C1), y(_T) = 1/2*_T*(8*_T*ln(_T)+16+(_C1-1
6)*_T)/(-2+_T)^2]