ODE
\[ a y(x)+x y'(x)^2-y(x) y'(x)=0 \] ODE Classification
[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
No Missing Variables ODE, Solve for \(x\)
Mathematica ✓
cpu = 0.805737 (sec), leaf count = 158
\[\left \{\text {Solve}\left [\frac {y(x)}{a x}+\frac {\sqrt {\frac {y(x)}{x}} \sqrt {\frac {y(x)}{x}-4 a}}{a}+4 c_1+2 \log (x)=4 \log \left (\sqrt {\frac {y(x)}{x}-4 a}+\sqrt {\frac {y(x)}{x}}\right ),y(x)\right ],\text {Solve}\left [\frac {\sqrt {\frac {y(x)}{x}} \sqrt {\frac {y(x)}{x}-4 a}}{a}+4 c_1=\frac {y(x)}{a x}+4 \log \left (\sqrt {\frac {y(x)}{x}-4 a}+\sqrt {\frac {y(x)}{x}}\right )+2 \log (x),y(x)\right ]\right \}\]
Maple ✓
cpu = 0.027 (sec), leaf count = 40
\[ \left \{ y \left ( x \right ) =0,[x \left ( {\it \_T} \right ) ={ \left ( {\it \_T}-a \right ) {\it \_C1} \left ( {{\rm e}^{{\frac {{\it \_T}}{a}}}} \right ) ^{-1}},y \left ( {\it \_T} \right ) ={{{\it \_T}}^{2}{\it \_C1} \left ( {{\rm e}^{{\frac {{\it \_T}}{a}}}} \right ) ^{-1}}] \right \} \] Mathematica raw input
DSolve[a*y[x] - y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[4*C[1] + 2*Log[x] + y[x]/(a*x) + (Sqrt[y[x]/x]*Sqrt[-4*a + y[x]/x])/a ==
4*Log[Sqrt[y[x]/x] + Sqrt[-4*a + y[x]/x]], y[x]], Solve[4*C[1] + (Sqrt[y[x]/x]*S
qrt[-4*a + y[x]/x])/a == 2*Log[x] + 4*Log[Sqrt[y[x]/x] + Sqrt[-4*a + y[x]/x]] +
y[x]/(a*x), y[x]]}
Maple raw input
dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = 0, [x(_T) = (_T-a)*_C1/exp(_T/a), y(_T) = _T^2*_C1/exp(_T/a)]