4.18.12 ay(x)+xy(x)2y(x)y(x)=0

ODE
ay(x)+xy(x)2y(x)y(x)=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
No Missing Variables ODE, Solve for x

Mathematica
cpu = 0.805737 (sec), leaf count = 158

{Solve[y(x)ax+y(x)xy(x)x4aa+4c1+2log(x)=4log(y(x)x4a+y(x)x),y(x)],Solve[y(x)xy(x)x4aa+4c1=y(x)ax+4log(y(x)x4a+y(x)x)+2log(x),y(x)]}

Maple
cpu = 0.027 (sec), leaf count = 40

{y(x)=0,[x(_T)=(_Ta)_C1(e_Ta)1,y(_T)=_T2_C1(e_Ta)1]} Mathematica raw input

DSolve[a*y[x] - y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[4*C[1] + 2*Log[x] + y[x]/(a*x) + (Sqrt[y[x]/x]*Sqrt[-4*a + y[x]/x])/a == 
4*Log[Sqrt[y[x]/x] + Sqrt[-4*a + y[x]/x]], y[x]], Solve[4*C[1] + (Sqrt[y[x]/x]*S
qrt[-4*a + y[x]/x])/a == 2*Log[x] + 4*Log[Sqrt[y[x]/x] + Sqrt[-4*a + y[x]/x]] + 
y[x]/(a*x), y[x]]}

Maple raw input

dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = 0, [x(_T) = (_T-a)*_C1/exp(_T/a), y(_T) = _T^2*_C1/exp(_T/a)]