[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.805737 (sec), leaf count = 158
Maple ✓
cpu = 0.027 (sec), leaf count = 40
DSolve[a*y[x] - y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[4*C[1] + 2*Log[x] + y[x]/(a*x) + (Sqrt[y[x]/x]*Sqrt[-4*a + y[x]/x])/a ==
4*Log[Sqrt[y[x]/x] + Sqrt[-4*a + y[x]/x]], y[x]], Solve[4*C[1] + (Sqrt[y[x]/x]*S
qrt[-4*a + y[x]/x])/a == 2*Log[x] + 4*Log[Sqrt[y[x]/x] + Sqrt[-4*a + y[x]/x]] +
y[x]/(a*x), y[x]]}
Maple raw input
dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = 0, [x(_T) = (_T-a)*_C1/exp(_T/a), y(_T) = _T^2*_C1/exp(_T/a)]