4.18.13 y(x)y(x)+xy(x)2y(x)4=0

ODE
y(x)y(x)+xy(x)2y(x)4=0 ODE Classification

[[_homogeneous, `class G`]]

Book solution method
No Missing Variables ODE, Solve for x

Mathematica
cpu = 0.204213 (sec), leaf count = 133

{{y(x)tanh2(12(c1log(x)))12x},{y(x)tanh2(12(c1log(x)))12x},{y(x)tanh2(12(log(x)c1))12x},{y(x)tanh2(12(log(x)c1))12x}}

Maple
cpu = 0.072 (sec), leaf count = 57

{(y(x))2+14x=0,ln(x)_C12Artanh(14x(y(x))2+1)=0,ln(x)_C1+2Artanh(14x(y(x))2+1)=0} Mathematica raw input

DSolve[-y[x]^4 + y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -Sqrt[-1 + Tanh[(C[1] - Log[x])/2]^2]/(2*Sqrt[x])}, {y[x] -> Sqrt[-1 +
 Tanh[(C[1] - Log[x])/2]^2]/(2*Sqrt[x])}, {y[x] -> -Sqrt[-1 + Tanh[(-C[1] + Log[
x])/2]^2]/(2*Sqrt[x])}, {y[x] -> Sqrt[-1 + Tanh[(-C[1] + Log[x])/2]^2]/(2*Sqrt[x
])}}

Maple raw input

dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)-y(x)^4 = 0, y(x),'implicit')

Maple raw output

y(x)^2+1/4/x = 0, ln(x)-_C1+2*arctanh(1/(4*x*y(x)^2+1)^(1/2)) = 0, ln(x)-_C1-2*a
rctanh(1/(4*x*y(x)^2+1)^(1/2)) = 0