4.18.17 xy(x)2(3xy(x))y(x)+y(x)=0

ODE
xy(x)2(3xy(x))y(x)+y(x)=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 604.473 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.043 (sec), leaf count = 29

{y(x)=x,[x(_T)=(1+_T)_C1_T32,y(_T)=(_T3)_C11_T]} Mathematica raw input

DSolve[y[x] - (3*x - y[x])*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(x*diff(y(x),x)^2-(3*x-y(x))*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x, [x(_T) = (1+_T)*_C1/_T^(3/2), y(_T) = -1/_T^(1/2)*(_T-3)*_C1]