[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]
Book solution method
Clairaut’s equation and related types,
Mathematica ✓
cpu = 0.877841 (sec), leaf count = 145
Maple ✓
cpu = 0.038 (sec), leaf count = 39
DSolve[-y[x] + (a + x - y[x])*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> -(-3*a^2 - 3*a*E^(4*C[1]) + 6*a*x + 2*E^(4*C[1])*x + Sqrt[-(a*E^(4*C[1
])*(a + E^(4*C[1]) + 4*x)^2)])/(2*(a + E^(4*C[1])))}, {y[x] -> (3*a^2 + 3*a*(E^(
4*C[1]) - 2*x) - 2*E^(4*C[1])*x + Sqrt[-(a*E^(4*C[1])*(a + E^(4*C[1]) + 4*x)^2)]
)/(2*(a + E^(4*C[1])))}}
Maple raw input
dsolve(x*diff(y(x),x)^2+(a+x-y(x))*diff(y(x),x)-y(x) = 0, y(x),'implicit')
Maple raw output
y(x)^2+(-2*a+2*x)*y(x)+(a+x)^2 = 0, y(x) = _C1*(_C1*x+a+x)/(_C1+1)