4.18.16 (ay(x)+x)y(x)+xy(x)2y(x)=0

ODE
(ay(x)+x)y(x)+xy(x)2y(x)=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 0.877841 (sec), leaf count = 145

{{y(x)3a2+ae4c1(a+e4c1+4x)23ae4c1+6ax+2e4c1x2(a+e4c1)},{y(x)3a2+3a(e4c12x)+ae4c1(a+e4c1+4x)22e4c1x2(a+e4c1)}}

Maple
cpu = 0.038 (sec), leaf count = 39

{(y(x))2+(2a+2x)y(x)+(a+x)2=0,y(x)=_C1(_C1x+a+x)_C1+1} Mathematica raw input

DSolve[-y[x] + (a + x - y[x])*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(-3*a^2 - 3*a*E^(4*C[1]) + 6*a*x + 2*E^(4*C[1])*x + Sqrt[-(a*E^(4*C[1
])*(a + E^(4*C[1]) + 4*x)^2)])/(2*(a + E^(4*C[1])))}, {y[x] -> (3*a^2 + 3*a*(E^(
4*C[1]) - 2*x) - 2*E^(4*C[1])*x + Sqrt[-(a*E^(4*C[1])*(a + E^(4*C[1]) + 4*x)^2)]
)/(2*(a + E^(4*C[1])))}}

Maple raw input

dsolve(x*diff(y(x),x)^2+(a+x-y(x))*diff(y(x),x)-y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^2+(-2*a+2*x)*y(x)+(a+x)^2 = 0, y(x) = _C1*(_C1*x+a+x)/(_C1+1)