[[_homogeneous, `class G`], _rational, _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.635193 (sec), leaf count = 243
Maple ✓
cpu = 0.023 (sec), leaf count = 106
DSolve[b - a*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[(-2*a*ArcTanh[Sqrt[-4*b*x + a^2*y[x]^2]/(a*y[x])] - 2*(-1 + a)*ArcTanh[Sq
rt[-4*b*x + a^2*y[x]^2]/(y[x] - a*y[x])] + a*Log[4*b*x] - Log[4*b*x + (1 - 2*a)*
y[x]^2] + a*Log[4*b*x + (1 - 2*a)*y[x]^2])/(-1 + 2*a) == C[1], y[x]], Solve[(2*a
*ArcTanh[Sqrt[-4*b*x + a^2*y[x]^2]/(a*y[x])] + 2*(-1 + a)*ArcTanh[Sqrt[-4*b*x +
a^2*y[x]^2]/(y[x] - a*y[x])] + a*Log[4*b*x] - Log[4*b*x + (1 - 2*a)*y[x]^2] + a*
Log[4*b*x + (1 - 2*a)*y[x]^2])/(-1 + 2*a) == C[1], y[x]]}
Maple raw input
dsolve(x*diff(y(x),x)^2-a*y(x)*diff(y(x),x)+b = 0, y(x),'implicit')
Maple raw output
[x(_T) = _T^(1/a/(1-1/a))*(b/(_T^(1/(a-1)))/(2*a-1)/_T^2+_C1), y(_T) = (2*(_C1*_
T^(1/(a-1))*_T^2+b)*(a-1/2)*_T^(1/(a-1))+_T^(1/(a-1))*b)/_T/a/(_T^(1/(a-1)))/(2*
a-1)]