[[_homogeneous, `class A`], _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.591939 (sec), leaf count = 223
Maple ✓
cpu = 0.044 (sec), leaf count = 96
DSolve[b*x + a*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[(-2*a*ArcTan[(a*y[x])/(x*Sqrt[4*b - (a^2*y[x]^2)/x^2])] + (2 + a)*(2*ArcT
an[((2 + a)*y[x])/(x*Sqrt[4*b - (a^2*y[x]^2)/x^2])] - I*Log[b + ((1 + a)*y[x]^2)
/x^2]))/(8*(1 + a)) == C[1] + (I/2)*Log[x], y[x]], Solve[(-2*a*ArcTan[(a*y[x])/(
x*Sqrt[4*b - (a^2*y[x]^2)/x^2])] + (2 + a)*(2*ArcTan[((2 + a)*y[x])/(x*Sqrt[4*b
- (a^2*y[x]^2)/x^2])] + I*Log[b + ((1 + a)*y[x]^2)/x^2]))/(8*(1 + a)) == C[1] -
(I/2)*Log[x], y[x]]}
Maple raw input
dsolve(x*diff(y(x),x)^2+a*y(x)*diff(y(x),x)+b*x = 0, y(x),'implicit')
Maple raw output
[x(_T) = ((1+a)*_T^2+b)^(-a/(2+2*a))/(((1+a)*_T^2+b)^(1/(1+a)))*_T*_C1, y(_T) =
-(_T^2+b)/a*((1+a)*_T^2+b)^(-a/(2+2*a))/(((1+a)*_T^2+b)^(1/(1+a)))*_C1]