4.18.26 ay(x)y(x)+bx+xy(x)2=0

ODE
ay(x)y(x)+bx+xy(x)2=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.591939 (sec), leaf count = 223

{Solve[2atan1(ay(x)x4ba2y(x)2x2)+(a+2)(2tan1((a+2)y(x)x4ba2y(x)2x2)ilog((a+1)y(x)2x2+b))8(a+1)=c1+12ilog(x),y(x)],Solve[2atan1(ay(x)x4ba2y(x)2x2)+(a+2)(2tan1((a+2)y(x)x4ba2y(x)2x2)+ilog((a+1)y(x)2x2+b))8(a+1)=c112ilog(x),y(x)]}

Maple
cpu = 0.044 (sec), leaf count = 96

{[x(_T)=_T_C1((1+a)_T2+b)(1+a)1((1+a)_T2+b)a2+2a,y(_T)=(_T2+b)_C1a((1+a)_T2+b)(1+a)1((1+a)_T2+b)a2+2a]} Mathematica raw input

DSolve[b*x + a*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[(-2*a*ArcTan[(a*y[x])/(x*Sqrt[4*b - (a^2*y[x]^2)/x^2])] + (2 + a)*(2*ArcT
an[((2 + a)*y[x])/(x*Sqrt[4*b - (a^2*y[x]^2)/x^2])] - I*Log[b + ((1 + a)*y[x]^2)
/x^2]))/(8*(1 + a)) == C[1] + (I/2)*Log[x], y[x]], Solve[(-2*a*ArcTan[(a*y[x])/(
x*Sqrt[4*b - (a^2*y[x]^2)/x^2])] + (2 + a)*(2*ArcTan[((2 + a)*y[x])/(x*Sqrt[4*b 
- (a^2*y[x]^2)/x^2])] + I*Log[b + ((1 + a)*y[x]^2)/x^2]))/(8*(1 + a)) == C[1] - 
(I/2)*Log[x], y[x]]}

Maple raw input

dsolve(x*diff(y(x),x)^2+a*y(x)*diff(y(x),x)+b*x = 0, y(x),'implicit')

Maple raw output

[x(_T) = ((1+a)*_T^2+b)^(-a/(2+2*a))/(((1+a)*_T^2+b)^(1/(1+a)))*_T*_C1, y(_T) = 
-(_T^2+b)/a*((1+a)*_T^2+b)^(-a/(2+2*a))/(((1+a)*_T^2+b)^(1/(1+a)))*_C1]