4.18.30 (x+1)y(x)2=y(x)

ODE
(x+1)y(x)2=y(x) ODE Classification

[[_homogeneous, `class C`], _rational, _dAlembert]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.0186776 (sec), leaf count = 52

{{y(x)c1x+1+c124+x+1},{y(x)c1x+1+c124+x+1}}

Maple
cpu = 0.02 (sec), leaf count = 40

{y(x)=0,[x(_T)=_T2+_C1+2_T(_T1)2,y(_T)=_T2(_C1+1)(_T1)2]} Mathematica raw input

DSolve[(1 + x)*y'[x]^2 == y[x],y[x],x]

Mathematica raw output

{{y[x] -> 1 + x - Sqrt[1 + x]*C[1] + C[1]^2/4}, {y[x] -> 1 + x + Sqrt[1 + x]*C[1
] + C[1]^2/4}}

Maple raw input

dsolve((1+x)*diff(y(x),x)^2 = y(x), y(x),'implicit')

Maple raw output

y(x) = 0, [x(_T) = 1/(_T-1)^2*(-_T^2+_C1+2*_T), y(_T) = _T^2*(_C1+1)/(_T-1)^2]