4.18.31 (x+1)y(x)2(y(x)+x)y(x)+y(x)=0

ODE
(x+1)y(x)2(y(x)+x)y(x)+y(x)=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 0.256356 (sec), leaf count = 57

{{y(x)ec1(ec12x)2(ec1+2)},{y(x)2ec1(x2ec1)2ec1+1}}

Maple
cpu = 0.033 (sec), leaf count = 37

{(y(x))2+(2x4)y(x)+x2=0,y(x)=_C1(_C1x+_C1x)_C11} Mathematica raw input

DSolve[y[x] - (x + y[x])*y'[x] + (1 + x)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(E^C[1]*(E^C[1] - 2*x))/(2*(2 + E^C[1]))}, {y[x] -> (2*E^C[1]*(-2*E^C
[1] + x))/(1 + 2*E^C[1])}}

Maple raw input

dsolve((1+x)*diff(y(x),x)^2-(x+y(x))*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^2+(-2*x-4)*y(x)+x^2 = 0, y(x) = _C1*(_C1*x+_C1-x)/(_C1-1)