4.19.4 x2y(x)2(2xy(x)+1)y(x)+y(x)2+1=0

ODE
x2y(x)2(2xy(x)+1)y(x)+y(x)2+1=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 0.498578 (sec), leaf count = 101

{{y(x)14e2c1xec12+x},{y(x)14e2c1x+ec12+x},{y(x)4e2c1x2ec1+x},{y(x)4e2c1x+2ec1+x}}

Maple
cpu = 0.045 (sec), leaf count = 42

{y(x)=4x214x,y(x)=_C1x_C11,y(x)=_C1x+_C11} Mathematica raw input

DSolve[1 + y[x]^2 - (1 + 2*x*y[x])*y'[x] + x^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -1/(2*E^C[1]) + x + x/(4*E^(2*C[1]))}, {y[x] -> 1/(2*E^C[1]) + x + x/(
4*E^(2*C[1]))}, {y[x] -> -2/E^C[1] + x + (4*x)/E^(2*C[1])}, {y[x] -> 2/E^C[1] + 
x + (4*x)/E^(2*C[1])}}

Maple raw input

dsolve(x^2*diff(y(x),x)^2-(1+2*x*y(x))*diff(y(x),x)+1+y(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x) = 1/4*(4*x^2-1)/x, y(x) = _C1*x-(_C1-1)^(1/2), y(x) = _C1*x+(_C1-1)^(1/2)