4.19.5 (a+2xy(x))y(x)+x2y(x)2+y(x)2=0

ODE
(a+2xy(x))y(x)+x2y(x)2+y(x)2=0 ODE Classification

[[_homogeneous, `class G`], _rational, _Clairaut]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 0.273771 (sec), leaf count = 47

{{y(x)x2ac14c12},{y(x)2ac1+x4c12}}

Maple
cpu = 0.044 (sec), leaf count = 36

{y(x)=a4x,y(x)=_C1xa_C1,y(x)=_C1x+a_C1} Mathematica raw input

DSolve[y[x]^2 - (a + 2*x*y[x])*y'[x] + x^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> (x - 2*Sqrt[a]*C[1])/(4*C[1]^2)}, {y[x] -> (x + 2*Sqrt[a]*C[1])/(4*C[1
]^2)}}

Maple raw input

dsolve(x^2*diff(y(x),x)^2-(a+2*x*y(x))*diff(y(x),x)+y(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x) = -1/4/x*a, y(x) = _C1*x-(a*_C1)^(1/2), y(x) = _C1*x+(a*_C1)^(1/2)