4.19.6 x2y(x)2x(x2y(x))y(x)+y(x)2=0

ODE
x2y(x)2x(x2y(x))y(x)+y(x)2=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Change of variable

Mathematica
cpu = 0.107745 (sec), leaf count = 85

{{y(x)(cosh(4c1)sinh(4c1))(2xsinh(2c1)+2xcosh(2c1)1)4x},{y(x)(cosh(4c1)sinh(4c1))(2xsinh(2c1)+2xcosh(2c1)+1)4x}}

Maple
cpu = 0.06 (sec), leaf count = 69

{ln(x)Artanh(4y(x)+xx)+12ln(y(x)x)_C1=0,ln(x)+Artanh(4y(x)+xx)+12ln(y(x)x)_C1=0,y(x)=x4} Mathematica raw input

DSolve[y[x]^2 - x*(x - 2*y[x])*y'[x] + x^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> ((-1 + 2*x*Cosh[2*C[1]] + 2*x*Sinh[2*C[1]])*(Cosh[4*C[1]] - Sinh[4*C[1
]]))/(4*x)}, {y[x] -> -((1 + 2*x*Cosh[2*C[1]] + 2*x*Sinh[2*C[1]])*(Cosh[4*C[1]] 
- Sinh[4*C[1]]))/(4*x)}}

Maple raw input

dsolve(x^2*diff(y(x),x)^2-x*(x-2*y(x))*diff(y(x),x)+y(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x) = 1/4*x, ln(x)-arctanh(((-4*y(x)+x)/x)^(1/2))+1/2*ln(y(x)/x)-_C1 = 0, ln(x)
+arctanh(((-4*y(x)+x)/x)^(1/2))+1/2*ln(y(x)/x)-_C1 = 0