4.19.15 x2y(x)2+(y(x)+2x)y(x)y(x)+y(x)2=0

ODE
x2y(x)2+(y(x)+2x)y(x)y(x)+y(x)2=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
Change of variable

Mathematica
cpu = 0.131129 (sec), leaf count = 64

{{y(x)sinh(4c1)+cosh(4c1)sinh(2c1)+cosh(2c1)x},{y(x)sinh(4c1)+cosh(4c1)sinh(2c1)+cosh(2c1)+x}}

Maple
cpu = 0.08 (sec), leaf count = 99

{ln(x)12ln(1x(y(x)(y(x)+4x)x2x+2x+y(x)))+12ln(y(x)x)_C1=0,ln(x)+12ln(1x(y(x)(y(x)+4x)x2x+2x+y(x)))+12ln(y(x)x)_C1=0,y(x)=4x} Mathematica raw input

DSolve[y[x]^2 + y[x]*(2*x + y[x])*y'[x] + x^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -((Cosh[4*C[1]] + Sinh[4*C[1]])/(-x + Cosh[2*C[1]] + Sinh[2*C[1]]))}, 
{y[x] -> (Cosh[4*C[1]] + Sinh[4*C[1]])/(x + Cosh[2*C[1]] + Sinh[2*C[1]])}}

Maple raw input

dsolve(x^2*diff(y(x),x)^2+(2*x+y(x))*y(x)*diff(y(x),x)+y(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x) = -4*x, ln(x)-1/2*ln(((y(x)*(y(x)+4*x)/x^2)^(1/2)*x+2*x+y(x))/x)+1/2*ln(y(x
)/x)-_C1 = 0, ln(x)+1/2*ln(((y(x)*(y(x)+4*x)/x^2)^(1/2)*x+2*x+y(x))/x)+1/2*ln(y(
x)/x)-_C1 = 0