4.19.16 x2y(x)2+(2xy(x))y(x)y(x)+y(x)2=0

ODE
x2y(x)2+(2xy(x))y(x)y(x)+y(x)2=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
No Missing Variables ODE, Solve for x

Mathematica
cpu = 0.132102 (sec), leaf count = 73

{{y(x)sinh(2c1)cosh(2c1)xsinh(2c1)+xcosh(2c1)1},{y(x)sinh(2c1)cosh(2c1)xsinh(2c1)+xcosh(2c1)+1}}

Maple
cpu = 0.08 (sec), leaf count = 103

{ln(x)12ln(1x(4xy(x)+(y(x))2x2x2x+y(x)))+12ln(y(x)x)_C1=0,ln(x)+12ln(1x(4xy(x)+(y(x))2x2x2x+y(x)))+12ln(y(x)x)_C1=0,y(x)=4x} Mathematica raw input

DSolve[y[x]^2 + (2*x - y[x])*y[x]*y'[x] + x^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> (-Cosh[2*C[1]] + Sinh[2*C[1]])/(-1 + x*Cosh[2*C[1]] + x*Sinh[2*C[1]])}
, {y[x] -> (-Cosh[2*C[1]] + Sinh[2*C[1]])/(1 + x*Cosh[2*C[1]] + x*Sinh[2*C[1]])}
}

Maple raw input

dsolve(x^2*diff(y(x),x)^2+(2*x-y(x))*y(x)*diff(y(x),x)+y(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x) = 4*x, ln(x)-1/2*ln((((-4*x*y(x)+y(x)^2)/x^2)^(1/2)*x-2*x+y(x))/x)+1/2*ln(y
(x)/x)-_C1 = 0, ln(x)+1/2*ln((((-4*x*y(x)+y(x)^2)/x^2)^(1/2)*x-2*x+y(x))/x)+1/2*
ln(y(x)/x)-_C1 = 0