[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.0818556 (sec), leaf count = 88
Maple ✓
cpu = 251.375 (sec), leaf count = 166
DSolve[(1 - x^2)*y'[x]^2 == 1 - y[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> ((1 + E^(2*C[1]))*x - (-1 + E^(2*C[1]))*Sqrt[-1 + x^2])/(2*E^C[1])}, {
y[x] -> ((1 + E^(2*C[1]))*x + (-1 + E^(2*C[1]))*Sqrt[-1 + x^2])/(2*E^C[1])}}
Maple raw input
dsolve((-x^2+1)*diff(y(x),x)^2 = 1-y(x)^2, y(x),'implicit')
Maple raw output
y(x)^2-1 = 0, ((y(x)-1)*(1+y(x)))^(1/2)/(y(x)-1)^(1/2)/(1+y(x))^(1/2)*ln(y(x)+(y
(x)^2-1)^(1/2))+Intat(-1/(_a^2-1)*((_a^2-1)*(y(x)^2-1))^(1/2)/(y(x)-1)^(1/2)/(1+
y(x))^(1/2),_a = x)+_C1 = 0, ((y(x)-1)*(1+y(x)))^(1/2)/(y(x)-1)^(1/2)/(1+y(x))^(
1/2)*ln(y(x)+(y(x)^2-1)^(1/2))+Intat(1/(_a^2-1)*((_a^2-1)*(y(x)^2-1))^(1/2)/(y(x
)-1)^(1/2)/(1+y(x))^(1/2),_a = x)+_C1 = 0