4.19.18 (1x2)y(x)2=1y(x)2

ODE
(1x2)y(x)2=1y(x)2 ODE Classification

[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.0818556 (sec), leaf count = 88

{{y(x)12ec1((e2c1+1)x(e2c11)x21)},{y(x)12ec1((e2c11)x21+(e2c1+1)x)}}

Maple
cpu = 251.375 (sec), leaf count = 166

{(y(x))21=0,1(y(x)1)(1+y(x))ln(y(x)+(y(x))21)1y(x)111+y(x)+x1_a21(_a21)((y(x))21)1y(x)111+y(x)d_a+_C1=0,1(y(x)1)(1+y(x))ln(y(x)+(y(x))21)1y(x)111+y(x)+x1_a21(_a21)((y(x))21)1y(x)111+y(x)d_a+_C1=0} Mathematica raw input

DSolve[(1 - x^2)*y'[x]^2 == 1 - y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> ((1 + E^(2*C[1]))*x - (-1 + E^(2*C[1]))*Sqrt[-1 + x^2])/(2*E^C[1])}, {
y[x] -> ((1 + E^(2*C[1]))*x + (-1 + E^(2*C[1]))*Sqrt[-1 + x^2])/(2*E^C[1])}}

Maple raw input

dsolve((-x^2+1)*diff(y(x),x)^2 = 1-y(x)^2, y(x),'implicit')

Maple raw output

y(x)^2-1 = 0, ((y(x)-1)*(1+y(x)))^(1/2)/(y(x)-1)^(1/2)/(1+y(x))^(1/2)*ln(y(x)+(y
(x)^2-1)^(1/2))+Intat(-1/(_a^2-1)*((_a^2-1)*(y(x)^2-1))^(1/2)/(y(x)-1)^(1/2)/(1+
y(x))^(1/2),_a = x)+_C1 = 0, ((y(x)-1)*(1+y(x)))^(1/2)/(y(x)-1)^(1/2)/(1+y(x))^(
1/2)*ln(y(x)+(y(x)^2-1)^(1/2))+Intat(1/(_a^2-1)*((_a^2-1)*(y(x)^2-1))^(1/2)/(y(x
)-1)^(1/2)/(1+y(x))^(1/2),_a = x)+_C1 = 0