4.19.19 (1x2)y(x)2+4x2+2xy(x)y(x)=0

ODE
(1x2)y(x)2+4x2+2xy(x)y(x)=0 ODE Classification

[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.349725 (sec), leaf count = 24

{{y(x)c124x2+42c1}}

Maple
cpu = 0.292 (sec), leaf count = 31

{(y(x))2+4x24=0,y(x)=_C1+_C1x2_C11} Mathematica raw input

DSolve[4*x^2 + 2*x*y[x]*y'[x] + (1 - x^2)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> (4 - 4*x^2 + C[1]^2)/(2*C[1])}}

Maple raw input

dsolve((-x^2+1)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+4*x^2 = 0, y(x),'implicit')

Maple raw output

y(x)^2+4*x^2-4 = 0, y(x) = -_C1+_C1*x^2-1/_C1