4.19.20 (a2+x2)y(x)2=b2

ODE
(a2+x2)y(x)2=b2 ODE Classification

[_quadrature]

Book solution method
Missing Variables ODE, Dependent variable missing, Solve for y

Mathematica
cpu = 0.0179269 (sec), leaf count = 48

{{y(x)c1blog(a2+x2+x)},{y(x)blog(a2+x2+x)+c1}}

Maple
cpu = 0.032 (sec), leaf count = 40

{y(x)=bln(x+a2+x2)+_C1,y(x)=bln(x+a2+x2)+_C1} Mathematica raw input

DSolve[(a^2 + x^2)*y'[x]^2 == b^2,y[x],x]

Mathematica raw output

{{y[x] -> C[1] - b*Log[x + Sqrt[a^2 + x^2]]}, {y[x] -> C[1] + b*Log[x + Sqrt[a^2
 + x^2]]}}

Maple raw input

dsolve((a^2+x^2)*diff(y(x),x)^2 = b^2, y(x),'implicit')

Maple raw output

y(x) = b*ln(x+(a^2+x^2)^(1/2))+_C1, y(x) = -b*ln(x+(a^2+x^2)^(1/2))+_C1