4.19.35 x(1x2)y(x)22(1x2)y(x)y(x)+x(1y(x)2)=0

ODE
x(1x2)y(x)22(1x2)y(x)y(x)+x(1y(x)2)=0 ODE Classification

[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Book solution method
Change of variable

Mathematica
cpu = 0.112043 (sec), leaf count = 61

{{y(x)xcos(2tan1(x1x+1)+ic1)},{y(x)xcos(2tan1(x1x+1)ic1)}}

Maple
cpu = 0.423 (sec), leaf count = 35

{(y(x))2x2=0,y(x)=_C12+1+x21_C1} Mathematica raw input

DSolve[x*(1 - y[x]^2) - 2*(1 - x^2)*y[x]*y'[x] + x*(1 - x^2)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> x*Cos[2*ArcTan[Sqrt[(-1 + x)/(1 + x)]] + I*C[1]]}, {y[x] -> x*Cos[2*Ar
cTan[Sqrt[(-1 + x)/(1 + x)]] - I*C[1]]}}

Maple raw input

dsolve(x*(-x^2+1)*diff(y(x),x)^2-2*(-x^2+1)*y(x)*diff(y(x),x)+x*(1-y(x)^2) = 0, y(x),'implicit')

Maple raw output

y(x)^2-x^2 = 0, y(x) = (-_C1^2+1)^(1/2)+(x^2-1)^(1/2)*_C1