[_quadrature]
Book solution method
Change of variable
Mathematica ✓
cpu = 0.955217 (sec), leaf count = 297
Maple ✓
cpu = 0.069 (sec), leaf count = 83
DSolve[4*(a - x)*(b - x)*x*y'[x]^2 == (a*b - 2*(a + b)*x + 2*x^2)^2,y[x],x]
Mathematica raw output
{{y[x] -> C[1] - ((I/3)*(-a + x)*(2*x*(-b + x) + (I*Sqrt[(-b + x)/(a - b)]*(2*(a
^2 - b^2)*EllipticE[I*ArcSinh[Sqrt[-1 + x/a]], a/(a - b)] + b*(a + 2*b)*Elliptic
F[I*ArcSinh[Sqrt[-1 + x/a]], a/(a - b)]))/Sqrt[1 - a/x]))/Sqrt[-(x*(-a + x)*(-b
+ x))]}, {y[x] -> C[1] + ((I/3)*(-a + x)*(2*x*(-b + x) + (I*Sqrt[(-b + x)/(a - b
)]*(2*(a^2 - b^2)*EllipticE[I*ArcSinh[Sqrt[-1 + x/a]], a/(a - b)] + b*(a + 2*b)*
EllipticF[I*ArcSinh[Sqrt[-1 + x/a]], a/(a - b)]))/Sqrt[1 - a/x]))/Sqrt[-(x*(-a +
x)*(-b + x))]}}
Maple raw input
dsolve(4*x*(a-x)*(b-x)*diff(y(x),x)^2 = (a*b-2*x*(a+b)+2*x^2)^2, y(x),'implicit')
Maple raw output
y(x) = Int(-1/2/(x*(b-x)*(a-x))^(1/2)*(2*x^2+(-2*a-2*b)*x+a*b),x)+_C1, y(x) = In
t(1/2/(x*(b-x)*(a-x))^(1/2)*(2*x^2+(-2*a-2*b)*x+a*b),x)+_C1