4.19.39 x4y(x)2+xy(x)2y(x)y(x)3=0

ODE
x4y(x)2+xy(x)2y(x)y(x)3=0 ODE Classification

[[_homogeneous, `class G`]]

Book solution method
Change of variable

Mathematica
cpu = 0.20814 (sec), leaf count = 50

{{y(x)4e2c1x2ec1x},{y(x)e2c1x2ec1+4x}}

Maple
cpu = 0.177 (sec), leaf count = 84

{2(y(x))1+x2+1x2y(x)(y(x))2+4x2y(x)_C1=0,2y(x)+(y(x))2x2+y(x)x2(y(x))2+4x2y(x)_C1=0,y(x)=4x2} Mathematica raw input

DSolve[-y[x]^3 + x*y[x]^2*y'[x] + x^4*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> (-4*E^(2*C[1])*x)/(2*E^C[1] - x)}, {y[x] -> (E^(2*C[1])*x)/(2*E^C[1] +
 4*x)}}

Maple raw input

dsolve(x^4*diff(y(x),x)^2+x*y(x)^2*diff(y(x),x)-y(x)^3 = 0, y(x),'implicit')

Maple raw output

y(x) = -4*x^2, 2*y(x)+y(x)^2/x^2+y(x)/x^2*(y(x)^2+4*x^2*y(x))^(1/2)-_C1 = 0, 2/y
(x)+1/x^2+1/y(x)/x^2*(y(x)^2+4*x^2*y(x))^(1/2)-_C1 = 0