4.19.40 x2(a2x2)y(x)2+1=0

ODE
x2(a2x2)y(x)2+1=0 ODE Classification

[_quadrature]

Book solution method
Missing Variables ODE, Dependent variable missing, Solve for y

Mathematica
cpu = 0.0533868 (sec), leaf count = 139

{{y(x)c1ixx2a2log(2(x2a2ia)x)ax4a2x2},{y(x)c1+ixx2a2log(2(x2a2ia)x)ax4a2x2}}

Maple
cpu = 0.038 (sec), leaf count = 90

{y(x)=1ln(1x(2a2+2a2a2+x2))1a2+_C1,y(x)=1ln(1x(2a2+2a2a2+x2))1a2+_C1} Mathematica raw input

DSolve[1 + x^2*(a^2 - x^2)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1] - (I*x*Sqrt[-a^2 + x^2]*Log[(2*((-I)*a + Sqrt[-a^2 + x^2]))/x])/(
a*Sqrt[-(a^2*x^2) + x^4])}, {y[x] -> C[1] + (I*x*Sqrt[-a^2 + x^2]*Log[(2*((-I)*a
 + Sqrt[-a^2 + x^2]))/x])/(a*Sqrt[-(a^2*x^2) + x^4])}}

Maple raw input

dsolve(x^2*(a^2-x^2)*diff(y(x),x)^2+1 = 0, y(x),'implicit')

Maple raw output

y(x) = -1/(-a^2)^(1/2)*ln((-2*a^2+2*(-a^2)^(1/2)*(-a^2+x^2)^(1/2))/x)+_C1, y(x) 
= 1/(-a^2)^(1/2)*ln((-2*a^2+2*(-a^2)^(1/2)*(-a^2+x^2)^(1/2))/x)+_C1