4.19.44 x8y(x)2+3xy(x)+9y(x)=0

ODE
x8y(x)2+3xy(x)+9y(x)=0 ODE Classification

[[_homogeneous, `class G`]]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.415011 (sec), leaf count = 120

{Solve[6c1+2x24x8y(x)tan1(4x6y(x)1)x4x6y(x)1+log(y(x))=0,y(x)],Solve[6c1+log(y(x))=2x24x8y(x)tan1(4x6y(x)1)x4x6y(x)1,y(x)]}

Maple
cpu = 0.069 (sec), leaf count = 71

{ln(x)_C1ln(y(x)x6)613Artanh(14y(x)x6)=0,ln(x)_C1ln(y(x)x6)6+13Artanh(14y(x)x6)=0,y(x)=14x6} Mathematica raw input

DSolve[9*y[x] + 3*x*y'[x] + x^8*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[6*C[1] + Log[y[x]] + (2*ArcTan[Sqrt[-1 + 4*x^6*y[x]]]*Sqrt[x^2 - 4*x^8*y[
x]])/(x*Sqrt[-1 + 4*x^6*y[x]]) == 0, y[x]], Solve[6*C[1] + Log[y[x]] == (2*ArcTa
n[Sqrt[-1 + 4*x^6*y[x]]]*Sqrt[x^2 - 4*x^8*y[x]])/(x*Sqrt[-1 + 4*x^6*y[x]]), y[x]
]}

Maple raw input

dsolve(x^8*diff(y(x),x)^2+3*x*diff(y(x),x)+9*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = 1/4/x^6, ln(x)-_C1-1/6*ln(y(x)*x^6)+1/3*arctanh((1-4*y(x)*x^6)^(1/2)) = 0
, ln(x)-_C1-1/6*ln(y(x)*x^6)-1/3*arctanh((1-4*y(x)*x^6)^(1/2)) = 0