4.19.43 x6y(x)22xy(x)4y(x)=0

ODE
x6y(x)22xy(x)4y(x)=0 ODE Classification

[[_homogeneous, `class G`], _rational]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.385876 (sec), leaf count = 120

{Solve[4c1+24x6y(x)+x2tanh1(4x4y(x)+1)x4x4y(x)+1+log(y(x))=0,y(x)],Solve[4c1+log(y(x))=24x6y(x)+x2tanh1(4x4y(x)+1)x4x4y(x)+1,y(x)]}

Maple
cpu = 0.063 (sec), leaf count = 71

{ln(x)_C1ln(x4y(x))412Artanh(4x4y(x)+1)=0,ln(x)_C1ln(x4y(x))4+12Artanh(4x4y(x)+1)=0,y(x)=14x4} Mathematica raw input

DSolve[-4*y[x] - 2*x*y'[x] + x^6*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[4*C[1] + Log[y[x]] + (2*ArcTanh[Sqrt[1 + 4*x^4*y[x]]]*Sqrt[x^2 + 4*x^6*y[
x]])/(x*Sqrt[1 + 4*x^4*y[x]]) == 0, y[x]], Solve[4*C[1] + Log[y[x]] == (2*ArcTan
h[Sqrt[1 + 4*x^4*y[x]]]*Sqrt[x^2 + 4*x^6*y[x]])/(x*Sqrt[1 + 4*x^4*y[x]]), y[x]]}

Maple raw input

dsolve(x^6*diff(y(x),x)^2-2*x*diff(y(x),x)-4*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = -1/4/x^4, ln(x)-_C1-1/4*ln(x^4*y(x))-1/2*arctanh((4*x^4*y(x)+1)^(1/2)) = 
0, ln(x)-_C1-1/4*ln(x^4*y(x))+1/2*arctanh((4*x^4*y(x)+1)^(1/2)) = 0