4.2.45 y(x)=axn1n+by(x)n

ODE
y(x)=axn1n+by(x)n ODE Classification

[[_homogeneous, `class G`], _Chini]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 172.366 (sec), leaf count = 109

Solve[1xaK[2]n1n(bK[2]nn1a)1ndK[2]+c1=1y(x)(bxnn1a)1n1K[1]((1)n(n1)na1nb)1n+K[1]n+1dK[1],y(x)]

Maple
cpu = 0.305 (sec), leaf count = 61

{_by(x)1xnn1((bx(n1)_an+_a)xnn1+a(n1)x)1d_a(n1)+ln(x)_C1=0} Mathematica raw input

DSolve[y'[x] == a*x^(n/(1 - n)) + b*y[x]^n,y[x],x]

Mathematica raw output

Solve[C[1] + Integrate[a*K[2]^(n/(1 - n))*((b*K[2]^(n/(-1 + n)))/a)^n^(-1), {K[2
], 1, x}] == Integrate[(1 - (((-1)^n*a^(1 - n))/(b*(-1 + n)^n))^n^(-1)*K[1] + K[
1]^n)^(-1), {K[1], 1, ((b*x^(n/(-1 + n)))/a)^n^(-1)*y[x]}], y[x]]

Maple raw input

dsolve(diff(y(x),x) = a*x^(n/(1-n))+b*y(x)^n, y(x),'implicit')

Maple raw output

-Int(1/((b*x*(n-1)*_a^n+_a)*x^(1/(n-1)*n)+a*(n-1)*x)*x^(1/(n-1)*n),_a = _b .. y(
x))*(n-1)+ln(x)-_C1 = 0