4.2.46 y(x)=f(x)y(x)+g(x)y(x)k

ODE
y(x)=f(x)y(x)+g(x)y(x)k ODE Classification

[_Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 0.493421 (sec), leaf count = 64

{{y(x)(e(k1)1xf(K[1])dK[1](c1(k1)1xg(K[2])e(k1)1K[2]f(K[1])dK[1]dK[2]))11k}}

Maple
cpu = 0.019 (sec), leaf count = 48

{(y(x))1k+ef(x)(k1)dxg(x)(k1)dx_C1ef(x)(k1)dx=0} Mathematica raw input

DSolve[y'[x] == f[x]*y[x] + g[x]*y[x]^k,y[x],x]

Mathematica raw output

{{y[x] -> ((C[1] - (-1 + k)*Integrate[E^((-1 + k)*Integrate[f[K[1]], {K[1], 1, K
[2]}])*g[K[2]], {K[2], 1, x}])/E^((-1 + k)*Integrate[f[K[1]], {K[1], 1, x}]))^(1
 - k)^(-1)}}

Maple raw input

dsolve(diff(y(x),x) = f(x)*y(x)+g(x)*y(x)^k, y(x),'implicit')

Maple raw output

y(x)^(1-k)+(-Int(-exp(Int(f(x)*(k-1),x))*g(x)*(k-1),x)-_C1)/exp(Int(f(x)*(k-1),x
)) = 0