ODE
\[ y'(x)=f(x)+g(x) y(x)+h(x) y(x)^n \] ODE Classification
[_Chini]
Book solution method
Change of Variable, new dependent variable
Mathematica ✗
cpu = 3.99729 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == f[x] + g[x]*y[x] + h[x]*y[x]^n, y[x], x]
Maple ✗
cpu = 0.36 (sec), leaf count = 0 , could not solve
dsolve(diff(y(x),x) = f(x)+g(x)*y(x)+h(x)*y(x)^n, y(x),'implicit')
Mathematica raw input
DSolve[y'[x] == f[x] + g[x]*y[x] + h[x]*y[x]^n,y[x],x]
Mathematica raw output
DSolve[Derivative[1][y][x] == f[x] + g[x]*y[x] + h[x]*y[x]^n, y[x], x]
Maple raw input
dsolve(diff(y(x),x) = f(x)+g(x)*y(x)+h(x)*y(x)^n, y(x),'implicit')
Maple raw output
dsolve(diff(y(x),x) = f(x)+g(x)*y(x)+h(x)*y(x)^n, y(x),'implicit')