4.20.40 ((14a2)x2+y(x)2)y(x)28a2xy(x)y(x)+(14a2)y(x)2+x2=0

ODE
((14a2)x2+y(x)2)y(x)28a2xy(x)y(x)+(14a2)y(x)2+x2=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
Homogeneous ODE, xnf(yx,y)=0, Solve for p

Mathematica
cpu = 0.391856 (sec), leaf count = 317

{Solve[c1=RootSum[#13+#122a12a+1+8#1a2#1+2a12a+1&,#12log(y(x)x#1)+4a2log(y(x)x#1)log(y(x)x#1)3#12+2#12a12a+1+8a21&]+log(x),y(x)],Solve[c1=RootSum[#13+#122a12a+18#1a2+#1+2a12a+1&,#12log(y(x)x#1)+4a2log(y(x)x#1)log(y(x)x#1)3#122#12a12a+1+8a21&]+log(x),y(x)]}

Maple
cpu = 0.544 (sec), leaf count = 137

{ln(x)+y(x)x1_a416_a2a2+2_a2+1(_a38_aa2+(_a2+1)2(4a21)+_a)d_a_C1=0,ln(x)y(x)x11_a4+(16a22)_a2(8_aa2+_a3+_a(_a2+1)2(4a21))d_a_C1=0} Mathematica raw input

DSolve[x^2 + (1 - 4*a^2)*y[x]^2 - 8*a^2*x*y[x]*y'[x] + ((1 - 4*a^2)*x^2 + y[x]^2)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[C[1] == Log[x] + RootSum[Sqrt[-1 + 2*a]*Sqrt[1 + 2*a] - #1 + 8*a^2*#1 + S
qrt[-1 + 2*a]*Sqrt[1 + 2*a]*#1^2 - #1^3 & , (-Log[-#1 + y[x]/x] + 4*a^2*Log[-#1 
+ y[x]/x] - Log[-#1 + y[x]/x]*#1^2)/(-1 + 8*a^2 + 2*Sqrt[-1 + 2*a]*Sqrt[1 + 2*a]
*#1 - 3*#1^2) & ], y[x]], Solve[C[1] == Log[x] + RootSum[Sqrt[-1 + 2*a]*Sqrt[1 +
 2*a] + #1 - 8*a^2*#1 + Sqrt[-1 + 2*a]*Sqrt[1 + 2*a]*#1^2 + #1^3 & , (-Log[-#1 +
 y[x]/x] + 4*a^2*Log[-#1 + y[x]/x] - Log[-#1 + y[x]/x]*#1^2)/(-1 + 8*a^2 - 2*Sqr
t[-1 + 2*a]*Sqrt[1 + 2*a]*#1 - 3*#1^2) & ], y[x]]}

Maple raw input

dsolve(((-4*a^2+1)*x^2+y(x)^2)*diff(y(x),x)^2-8*a^2*x*y(x)*diff(y(x),x)+x^2+(-4*a^2+1)*y(x)^2 = 0, y(x),'implicit')

Maple raw output

ln(x)-Intat((-8*_a*a^2+_a^3+_a-((_a^2+1)^2*(4*a^2-1))^(1/2))/(-1-_a^4+(16*a^2-2)
*_a^2),_a = y(x)/x)-_C1 = 0, ln(x)+Intat((_a^3-8*_a*a^2+((_a^2+1)^2*(4*a^2-1))^(
1/2)+_a)/(_a^4-16*_a^2*a^2+2*_a^2+1),_a = y(x)/x)-_C1 = 0