[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
Homogeneous ODE,
Mathematica ✓
cpu = 0.176591 (sec), leaf count = 93
Maple ✓
cpu = 0.545 (sec), leaf count = 78
DSolve[x^2 + (1 - a^2)*y[x]^2 + 2*a^2*x*y[x]*y'[x] + ((1 - a^2)*x^2 + y[x]^2)*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[Sqrt[-1 + a]*Sqrt[1 + a]*ArcTan[y[x]/x] == C[1] + Log[x] + Log[1 + y[x]^2
/x^2]/2, y[x]], Solve[Sqrt[-1 + a]*Sqrt[1 + a]*ArcTan[y[x]/x] + Log[x] + Log[1 +
y[x]^2/x^2]/2 == C[1], y[x]]}
Maple raw input
dsolve(((-a^2+1)*x^2+y(x)^2)*diff(y(x),x)^2+2*a^2*x*y(x)*diff(y(x),x)+x^2+(-a^2+1)*y(x)^2 = 0, y(x),'implicit')
Maple raw output
ln(x)+1/2*ln((x^2+y(x)^2)/x^2)-(a^2-1)^(1/2)*arctan(y(x)/x)-_C1 = 0, ln(x)+1/2*l
n((x^2+y(x)^2)/x^2)+(a^2-1)^(1/2)*arctan(y(x)/x)-_C1 = 0