3.5.3 Solved examples

3.5.3.1 Example 1
3.5.3.2 Example 2
3.5.3.3 Example 3
3.5.3.4 Example 4
3.5.3.5 Example 5
3.5.3.6 Example 6
3.5.3.7 Example 7
3.5.3.8 Example 8
3.5.3.9 Example 9
3.5.3.10 Example 10
3.5.3.11 Example 11
3.5.3.12 Example 12
3.5.3.13 Example 13
3.5.3.14 Example 14
3.5.3.15 Example 15
3.5.3.16 Example 16
3.5.3.17 Example 17
3.5.3.18 Example 18
3.5.3.19 Example 19
3.5.3.20 Example 20
3.5.3.21 Example 21
3.5.3.22 Example 22
3.5.3.23 Example 23
3.5.3.24 Example 24
3.5.3.25 Extra example

# original ode \(y=xf\left ( p\right ) +g\left ( p\right ) \) \(f\left ( p\right ) \) \(g\left ( p\right ) \) type
\(1\) \(x\left ( y^{\prime }\right ) ^{2}-yy^{\prime }=-1\) \(y=xp+\frac {1}{p}\) \(p\) \(\frac {1}{p}\) Clairaut
\(2\) \(y=xy^{\prime }-\left ( y^{\prime }\right ) ^{2}\) \(y=xp-p^{2}\) \(p\) \(-p^{2}\) Clairaut
\(3\) \(y=xy^{\prime }-\frac {1}{4}\left ( y^{\prime }\right ) ^{2}\) \(y=xp-\frac {1}{4}p^{2}\) \(p\) \(-\frac {1}{4}p^{2}\) Clairaut
\(4\) \(y=x\left ( y^{\prime }\right ) ^{2}\) \(y=xp^{2}\) \(p^{2}\) \(0\) d’Alembert
\(5\) \(y=x+\left ( y^{\prime }\right ) ^{2}\) \(y=x+p^{2}\) \(1\) \(p^{2}\) d’Alembert
\(6\) \(\left ( y^{\prime }\right ) ^{2}-1-x-y=0\) \(y=-x+\left ( p^{2}-1\right ) \) \(-1\) \(\left ( p^{2}-1\right ) \) d’Alembert
\(7\) \(yy^{\prime }-\left ( y^{\prime }\right ) ^{2}=x\) \(y=\frac {1}{p}x+p\) \(\frac {1}{p}\) \(p\) d’Alembert
\(8\) \(y=x\left ( y^{\prime }\right ) ^{2}+\left ( y^{\prime }\right ) ^{2}\) \(y=xp^{2}+p^{2}\) \(p^{2}\) \(p^{2}\) d’Alembert
\(9\) \(y=\frac {x}{a}y^{\prime }+\frac {b}{ay^{\prime }}\) \(y=\frac {x}{a}p+\frac {b}{a}\frac {1}{p}\) \(\frac {p}{a}\) \(\frac {b}{a}\frac {1}{p}\) d’Alembert
\(10\) \(y=x\left ( y^{\prime }+a\sqrt {1+\left ( y^{\prime }\right ) ^{2}}\right ) \) \(y=x\left ( p+a\sqrt {1+p^{2}}\right ) \) \(p+a\sqrt {1+p^{2}}\) \(0\) d’Alembert
\(11\) \(y=x+\left ( y^{\prime }\right ) ^{2}\left ( 1-\frac {2}{3}y^{\prime }\right ) \) \(y=x+p^{2}\left ( 1-\frac {2}{3}p\right ) \) \(1\) \(p^{2}\left ( 1-\frac {2}{3}p\right ) \) d’Alembert
\(12\) \(y=2x-\frac {1}{2}\ln \left ( \frac {\left ( y^{\prime }\right ) ^{2}}{y^{\prime }-1}\right ) \) \(y=2x-\frac {1}{2}\ln \left ( \frac {p^{2}}{p-1}\right ) \) \(2\) \(-\frac {1}{2}\ln \left ( \frac {p^{2}}{p-1}\right ) \) d’Alembert
\(13\) \(\left ( y^{\prime }\right ) ^{2}-x\left ( y^{\prime }\right ) ^{2}+y\left ( 1+y^{\prime }\right ) -xy^{\prime }=0\) \(y=\frac {xp+xp^{2}-p^{2}}{p+1}=xp-\frac {p^{2}}{p+1}\) \(p\) \(-\frac {p^{2}}{p+1}\) Clairaut
\(14\) \(x\left ( y^{\prime }\right ) ^{2}+\left ( x-y\right ) y^{\prime }+1-y=0\) \(y=xp+\frac {1}{1+p}\) \(p\) \(\frac {1}{1+p}\) Clairaut
\(15\) \(xyy^{\prime }=y^{2}+x\sqrt {4x^{2}+y^{2}}\) \(y=\operatorname {RootOf}\left ( h(p)\right ) x\) \(\operatorname {RootOf}\left ( h(p)\right ) \) \(0\) d’Alembert
\(16\) \(\ln \left ( \cos y^{\prime }\right ) +y^{\prime }\tan y^{\prime }=y\) \(y=\ln \left ( \cos p\right ) +p\tan p\) \(0\) \(\ln \left ( \cos p\right ) +p\tan p\) d’Alembert
\(17\) \(x\left ( y^{\prime }\right ) ^{2}-2yy^{\prime }+4x=0\) \(y=x\left ( \frac {1}{2}p+\frac {2}{p}\right ) \) \(\frac {1}{2}p+\frac {2}{p}\) \(0\) d’Alembert
\(18\) \(x-yy^{\prime }=a\left ( y^{\prime }\right ) ^{2}\) \(y=\frac {x}{p}-ap\) \(\frac {1}{p}\) \(-ap\) d’Alembert
\(19\) \(y=xF\left ( p\right ) +G\left ( p\right ) \) \(y=xF\left ( p\right ) +G\left ( p\right ) \) \(F\left ( p\right ) \) \(G\left ( p\right ) \) d’Alembert
\(20\) \(y^{\prime }=-\frac {x}{2}-1+\frac {1}{2}\sqrt {x^{2}+4x+4y}\) \(y=xp+\left ( 1+2p+p^{2}\right ) \) \(p\) \(1+2p+p^{2}\) Clairaut
\(21\) \(\frac {y^{\prime }y}{1+\frac {1}{2}\sqrt {1+\left ( y^{\prime }\right ) ^{2}}}=-x\) \(y=-x\left ( \frac {2+\sqrt {1+p^{2}}}{2p}\right ) \) \(-\left ( \frac {2+\sqrt {1+p^{2}}}{2p}\right ) \) \(0\) d’Alembert
\(22\) \(x\left ( y^{\prime }\right ) ^{3}=yy^{\prime }+1\) \(y=xp^{2}-\frac {1}{p}\) \(p^{2}\) \(-\frac {1}{p}\) d’Alembert
\(23\) \(\left ( y^{\prime }\right ) ^{2}-2yy^{\prime }=2x\) \(y=-x\frac {1}{p}+\frac {1}{2}p\) \(-\frac {1}{p}\) \(\frac {1}{2}p\) d’Alembert
\(24\) \(xy^{\prime }-y=\sqrt {x^{2}-y^{2}}\) \(y=x\left ( \frac {p}{2}\pm \frac {1}{2}\sqrt {2-p^{2}}\right ) \) \(\frac {p}{2}\pm \frac {1}{2}\sqrt {2-p^{2}}\) \(0\) d’Alembert