2.18.4 Third integrating factor
Using similar method If the above did not work, then we try
\[ R=\frac {1}{xM-yN}\left ( \frac {\partial N}{\partial x}-\frac {\partial M}{\partial y}\right ) \]
If
\(R\) is function of
\(t=xy\) only then the integrating factor is
\(\mu =e^{\int Rdt}\) and let
\(\overline {M}=\mu M,\overline {N}=\mu N\) then the ode
\(\overline {M}\left ( x,y\right ) +\overline {N}\left ( x,y\right ) y^{\prime }=0\) is now
exact.