3.5.3.24 Example 24
xyy=x2y2

Let y=p and rearranging gives

xpy=x2y2

Solving for y gives two solutions

(1)y=x(p2+122p2)y=x(p2122p2)

We will here solve the first one above. The second one will have similar solution. Comparing the above to

(2)y=xf(p)+g(p)

shows that

f=p2+122p2g=0

Since f(p)p then this is d’Almbert ode. Taking derivative of (2) w.r.t. x gives

p=ddx(xf(p))=f(p)+xf(p)dpdx=(p2+122p2)+x(12p22p2)dpdx(3)p(p2+122p2)=x(12p22p2)dpdx

Singular solution is when dpdx=0 which results in

p(p2+122p2)=0p2122p2=0

Hence p=1.  Substituting this in (2) gives singular solution

y=x(12+1221)=x

To find general solution, we need to solve (3) for p. EQ (3) becomes

dpdx=p2122p2x2xp22p2=1x2p2

This is separable ode.

dp2p2=1xdxarcsin(22p)=lnx+c1

Substituting this into (1) gives

y=x(p2+122p2)=x(22sin(lnx+c1)2+122(22sin(lnx+c1))2)=x(sin(lnx+c1)2+1222sin2(lnx+c1))