[
prev
] [
prev-tail
] [
tail
] [
up
]
4.3.2
Linear ode with non-constant coefficients
\(A\left ( x\right ) y^{\prime \prime }+B\left ( x\right ) y^{\prime }+C\left ( x\right ) y=f\left ( x\right ) \)
4.3.2.1
Collection of special transformations
4.3.2.2
Euler ode
\(x^{2}y^{\prime \prime }+xy^{\prime }+y=f\left ( x\right ) \)
4.3.2.3
Kovacic type
4.3.2.4
Method of conversion to first order Riccati
4.3.2.5
Airy ode
\(y^{\prime \prime }\pm kxy=0\)
or
\(y^{\prime \prime }+by^{\prime }\pm kxy=0\)
4.3.2.6
Solved using series method
4.3.2.7
Reduction of order
4.3.2.8
Transformation to a constant coefficient ODE methods
4.3.2.9
Exact linear second order ode
\(p_{2}\left ( x\right ) y^{\prime \prime }+p_{1}\left ( x\right ) y^{\prime }+p_{0}\left ( x\right ) y=f\left ( x\right ) \)
4.3.2.10
Linear second order not exact but solved by finding an integrating factor.
4.3.2.11
Linear second order not exact but solved by finding an M integrating factor.
4.3.2.12
Solved using Lagrange adjoint equation method.
4.3.2.13
Solved By transformation on
\(B\left ( x\right ) \)
for ODE
\(Ay^{\prime \prime }\left ( x\right ) +By^{\prime }\left ( x\right ) +C\left ( x\right ) y\left ( x\right ) =0\)
4.3.2.14
Bessel type ode
\(x^{2}y^{\prime \prime }+xy^{\prime }+\left ( x^{2}-n^{2}\right ) y=f\left ( x\right ) \)
4.3.2.15
Bessel form A type ode
\(ay^{\prime \prime }+by^{\prime }+(ce^{rx}-m)y=f\left ( x\right ) \)
[
prev
] [
prev-tail
] [
front
] [
up
]