4.3.2 Linear ode with non-constant coefficients \(A\left ( x\right ) y^{\prime \prime }+B\left ( x\right ) y^{\prime }+C\left ( x\right ) y=f\left ( x\right ) \)

4.3.2.1 Collection of special transformations
4.3.2.2 Euler ode \(x^{2}y^{\prime \prime }+xy^{\prime }+y=f\left ( x\right ) \)
4.3.2.3 Kovacic type
4.3.2.4 Method of conversion to first order Riccati
4.3.2.5 Airy ode \(y^{\prime \prime }\pm kxy=0\) or \(y^{\prime \prime }+by^{\prime }\pm kxy=0\)
4.3.2.6 Solved using series method
4.3.2.7 Reduction of order
4.3.2.8 Transformation to a constant coefficient ODE methods
4.3.2.9 Exact linear second order ode \(p_{2}\left ( x\right ) y^{\prime \prime }+p_{1}\left ( x\right ) y^{\prime }+p_{0}\left ( x\right ) y=f\left ( x\right ) \)
4.3.2.10 Linear second order not exact but solved by finding an integrating factor.
4.3.2.11 Linear second order not exact but solved by finding an M integrating factor.
4.3.2.12 Solved using Lagrange adjoint equation method.
4.3.2.13 Solved By transformation on \(B\left ( x\right ) \) for ODE \(Ay^{\prime \prime }\left ( x\right ) +By^{\prime }\left ( x\right ) +C\left ( x\right ) y\left ( x\right ) =0\)
4.3.2.14 Bessel type ode \(x^{2}y^{\prime \prime }+xy^{\prime }+\left ( x^{2}-n^{2}\right ) y=f\left ( x\right ) \)
4.3.2.15 Bessel form A type ode \(ay^{\prime \prime }+by^{\prime }+(ce^{rx}-m)y=f\left ( x\right ) \)