2.17.1.1 Example1
\[ \left ( 3x^{2}+2xy^{2}\right ) +\left ( 2x^{2}y+4y^{3}\right ) y^{\prime }=0 \]
Hence \(M=\left ( 3x^{2}+2xy^{2}\right ) ,N=\left ( 2x^{2}y+4y^{3}\right ) \). We see that \(\frac {\partial M}{\partial y}=4xy\) and \(\frac {\partial N}{\partial x}=4xy\), hence exact. Then (5) gives
\begin{align*} \phi & =\int Mdx+f\left ( y\right ) \\ & =\int 3x^{2}+2xy^{2}dx+f\left ( y\right ) \\ & =x^{3}+x^{2}y^{2}+f\left ( y\right ) \end{align*}

Hence (6) gives

\begin{align*} \frac {d}{dy}\left ( x^{3}+x^{2}y^{2}+f\left ( y\right ) \right ) & =N\\ 2yx^{2}+f^{\prime }\left ( y\right ) & =2x^{2}y+4y^{3}\\ f^{\prime }\left ( y\right ) & =4y^{3}\end{align*}

Therefore \(f\left ( y\right ) =y^{4}+c_{1}\). Therefore

\begin{align*} \phi & =\int Mdx+f\left ( y\right ) \\ & =x^{3}+x^{2}y^{2}+f\left ( y\right ) \\ & =x^{3}+x^{2}y^{2}+y^{4}+c_{1}\end{align*}

But \(\phi =c\), since constant. Hence combining constants the above becomes

\[ x^{3}+x^{2}y^{2}+y^{4}=C \]
Which is implicit solution for \(y\left ( x\right ) \).