2.18.3.1 Example 1
Solve
\begin{align*} \frac {dy}{dx} & =\frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\left ( x^{2}-1\right ) }\\ dy & =\frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\left ( x^{2}-1\right ) }dx\\ -\frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\left ( x^{2}-1\right ) }dx+dy & =0 \end{align*}
Comparing to
\[ M\left ( x,y\right ) dx+N\left ( x,y\right ) dy=0 \]
Shows that
\(M=-\frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\left ( x^{2}-1\right ) },N=1\). We see that
\(\frac {\partial M}{\partial y}\neq \frac {\partial N}{\partial x}\). Hence not exact. Lets try
\begin{align*} B & =\frac {1}{M}\left ( \frac {\partial N}{\partial x}-\frac {\partial M}{\partial y}\right ) \\ & =\frac {\left ( 1-x^{2}\right ) }{\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}\left ( 0-\frac {-y}{\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}\right ) \\ & =\frac {\left ( 1-x^{2}\right ) }{\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}\frac {y}{\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}\\ & =\frac {\left ( 1-x^{2}\right ) y}{\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }\\ & =\frac {-y}{\left ( y^{2}-1\right ) }\end{align*}
Since \(B\) does not depend on \(x\) then we can use this for an integrating factor.
\begin{align*} \mu & =e^{\int Bdy}\\ & =e^{-\int \frac {y}{\left ( y^{2}-1\right ) }dy}\\ & =\frac {1}{\sqrt {y-1}\sqrt {y+1}}\end{align*}
Hence the ode now becomes
\begin{align} \mu Mdx+\mu Ndy & =0\nonumber \\ \bar {M}dx+\bar {N}dy & =0 \tag {A1}\end{align}
Where
\begin{align*} \bar {M} & =\mu M\\ & =\frac {1}{\sqrt {y-1}\sqrt {y+1}}\frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\left ( x^{2}-1\right ) }\\ & =\frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( x^{2}-1\right ) }\end{align*}
And
\begin{align*} \bar {N} & =\mu N\\ & =\frac {1}{\sqrt {y-1}\sqrt {y+1}}\end{align*}
Now ode (A1) is exact. Now we follow the main method for solving an exact ode on the
above. Let
\begin{align} \frac {\partial \phi }{\partial x} & =\bar {M}\tag {1}\\ \frac {\partial \phi }{\partial y} & =\bar {N} \tag {2}\end{align}
Since \(M\) has both \(y\) and \(x\), in it and \(N\) has only \(y\) in it, then in this case we start differently than
before. We start with (2) and not (1) as it makes things simpler when integrating.
Integrating (2) w.r.t. \(y\) gives
\begin{align} \phi & =\int \bar {N}dy+f\left ( x\right ) \nonumber \\ & =\int \frac {1}{\sqrt {y-1}\sqrt {y+1}}dy+f\left ( x\right ) \nonumber \end{align}
But \(\int \frac {1}{\sqrt {y-1}\sqrt {y+1}}dy=\frac {\sqrt {\left ( y-1\right ) \left ( y+1\right ) }\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}=\frac {\sqrt {y^{2}-1}\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}\), hence the above becomes
\begin{equation} \phi =\frac {\sqrt {y^{2}-1}\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}+f\left ( x\right ) \tag {3}\end{equation}
Taking derivative of (3) w.r.t.
\(x\) gives
\begin{align} \frac {\partial \phi }{\partial x} & =\frac {d}{dx}\left ( \frac {\sqrt {y^{2}-1}\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}\right ) +f^{\prime }\left ( x\right ) \nonumber \\ \frac {\partial \phi }{\partial x} & =f^{\prime }\left ( x\right ) \tag {4}\end{align}
But \(\frac {\partial \phi }{\partial x}=\bar {M}\). Hence the above becomes
\begin{align*} \bar {M} & =f^{\prime }\left ( x\right ) \\ \frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( x^{2}-1\right ) } & =f^{\prime }\left ( x\right ) \end{align*}
To solve for \(f\left ( x\right ) \) we now integrate the above w.r.t. \(x\) which gives
\begin{equation} \int ^{x}\frac {\sqrt {\left ( \tau ^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( \tau ^{2}-1\right ) }d\tau =f\left ( x\right ) \nonumber \end{equation}
No need to add constant of
integration, as that will be absorbed anyway. Substituting the above back into (3) gives
\[ \phi =\frac {\sqrt {y^{2}-1}\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}+\int ^{x}\frac {\sqrt {\left ( \tau ^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( \tau ^{2}-1\right ) }d\tau \]
\(\phi =c\),
hence the solution is
\begin{equation} \frac {\sqrt {y^{2}-1}\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}+\int ^{x}\frac {\sqrt {\left ( \tau ^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( \tau ^{2}-1\right ) }d\tau +c=0 \tag {4A}\end{equation}
Lets now see what happens if after Eq (2), we started with \(M\) and not \(N\) as we always do.
Integrating (1) w.r.t. \(x\) gives
\begin{align} \phi & =\int \bar {M}dx+f\left ( y\right ) \nonumber \\ & =\int \frac {\sqrt {\left ( x^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( x^{2}-1\right ) }dx+f\left ( y\right ) \nonumber \\ & =\int ^{x}\frac {\sqrt {\left ( \tau ^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( \tau ^{2}-1\right ) }d\tau +f\left ( y\right ) \tag {5}\end{align}
Taking derivative w.r.t. \(y\) the above becomes
\begin{align*} \frac {\partial \phi }{\partial y} & =\frac {d}{dy}\int ^{x}\frac {\sqrt {\left ( \tau ^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( \tau ^{2}-1\right ) }d\tau +f^{\prime }\left ( y\right ) \\ & =\int ^{x}\frac {\partial }{\partial y}\left ( \frac {\sqrt {\left ( \tau ^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( \tau ^{2}-1\right ) }\right ) d\tau +f^{\prime }\left ( y\right ) \\ & =0+f^{\prime }\left ( y\right ) \\ & =f^{\prime }\left ( y\right ) \end{align*}
But \(\frac {\partial \phi }{\partial y}=\bar {N}\), hence the above becomes
\[ \frac {1}{\sqrt {y-1}\sqrt {y+1}}=f^{\prime }\left ( y\right ) \]
Integrating w.r.t.
\(y\) gives
\begin{align*} f\left ( y\right ) & =\int \frac {1}{\sqrt {y-1}\sqrt {y+1}}dy+c\\ f\left ( y\right ) & =\frac {\sqrt {\left ( y-1\right ) \left ( y+1\right ) }\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}+c \end{align*}
Substituting this into (5) gives the solution as (after combining constants)
\[ c_{1}=\int ^{x}\frac {\sqrt {\left ( \tau ^{2}-1\right ) \left ( y^{2}-1\right ) }}{\sqrt {y-1}\sqrt {y+1}\left ( \tau ^{2}-1\right ) }d\tau +\frac {\sqrt {\left ( y-1\right ) \left ( y+1\right ) }\ln \left ( y+\sqrt {y^{2}-1}\right ) }{\sqrt {y-1}\sqrt {y+1}}\]
Which is same answer as (4A). So starting with \(M\) or \(N\) gives same result. But
if \(N\) depends on \(x,y\,\) and \(M\) depends on only one of these, it can be simpler to pick \(M\).
Same for the other way around. If \(N\) depends on only one, and \(M\) depends on both \(x,y\),
then it will be easier to start with \(N\). But in both cases, same result should be
obtained.