3.5.3.14 Example 14
x(y)2+(xy)y+1y=0x(y)2+xyyy+1y=0y(y1)+x(y)2+xy+1=0

Solving for y

y=x(y)2xy1y1=xp2xp1p1=xp2+xp+1p+1=x(p2+pp+1)+11+p=xp+11+p(1)=xf+g

Where f=p and g=11+p. Since f(p)=p then this is Clairaut ode. Taking derivative of the above w.r.t. x gives

p=ddx(xp+g(p))p=p+(x+g(p))dpdx0=(x+g(p))dpdx

The general solution is given by

dpdx=0p=c1

Substituting this in (1) gives the general solution

(4)y=c1x+1c1+1

The term (x+g(p))=0 is used to find singular solutions. But

x+g(p)=x+ddp(11+p)=x1(p+1)2

Hence

x1(p+1)2=0x(p+1)21=0(p+1)2=1xp+1=±1xp=±1x1

Substituting these values into (1) gives

y1=xp1+11+p1=x(1x1)+11+(1x1)=xxx+x=xxxx+x(5)=2xx

And substituting p2 into (1) gives

y1=xp1+11+p1=x(1x1)+11+(1x1)=xxxx=xxxxx(6)=2xx

There are 3 solutions given in (4,5,6).  One is general  and two are singular.