2.2.1.1 Example 1 \(y^{\prime }=B+Cf\left ( ax+by+c\right ) \)
Solve
\begin{equation} y^{\prime }=B+Cf\left ( ax+by+c\right ) \tag {1}\end{equation}
This form of ode can be solved by letting
\(u=ax+by+c\) which makes the ode separable.
\[ \frac {du}{dx}=a+by^{\prime }\]
Or
\[ y^{\prime }=\frac {u^{\prime }-a}{b}\]
The
ode becomes
\begin{align*} \frac {u^{\prime }-a}{b} & =B+CF\left ( u\right ) \\ u^{\prime } & =bB+bCF\left ( u\right ) +a\\ \frac {du}{bB+bCF\left ( u\right ) +a} & =dx \end{align*}
Integrating gives
\begin{equation} \int \frac {du}{bB+bCF\left ( u\right ) +a}=x+c \tag {2A}\end{equation}
If initial conditions are given as
\(y\left ( x_{0}\right ) =y_{0}\), then
\(c\) is solved for using these values if
it is possible to integrate 2A. If not possible to integrate (2A), then we can do the
following. Rewrite (2A) as
\begin{align} \int _{0}^{ax_{0}+by_{0}+c}\frac {d\tau }{bB+bCF\left ( \tau \right ) +a} & =x_{0}+c_{1}\tag {2B}\\ c_{1} & =\int _{0}^{ax_{0}+by_{0}+c}\frac {d\tau }{bB+bCF\left ( \tau \right ) +a}-x_{0}\nonumber \end{align}
Substituting this into (2A) gives
\[ \int _{0}^{ax+by+c}\frac {d\tau }{bB+bCF\left ( \tau \right ) +a}=x+\int _{0}^{ax_{0}+by_{0}+c}\frac {d\tau }{bB+bCF\left ( \tau \right ) +a}-x_{0}\]
Note that when IC are given, the integrals are changed to
have lower limit start from zero.