3.3.18.1 Integrating factor that depends on x only

Let

(1)μM(x,y)+μN(x,y)dydx=dϕ(x,y)=ϕxdxdx+ϕydydx(2)=ϕx+ϕydydx

Comparing (1),(2) then

ϕx=μMϕy=μN

The compatibility condition is 2ϕyx=2ϕxy then this implies

y(ϕx)=x(ϕy)μMy=μNxμyM+μMy=μxN+μNxμxN=μyM+μMyμNxμxN=μyM+μ(MyNx)μx=μyMN+μN(MyNx)

Assuming μμ(x) then μy=0 and the above simplifies to

μx=μN(MyNx)dμdx1μ=1N(MyNx)

Let 1N(MyNx)=A. If AA(x) which depends only on x then we can solve the above.

dμdx1μ=Aμ=eAdx

Let M=μM,N=μN then the ode

M(x,y)+N(x,y)y=0

is now exact.