4 \(\cos \left ( \frac {x}{2}\right ) \)
From the double angle formula (3C)
\[ \cos \left ( 2A\right ) =\cos ^{2}A-\sin ^{2}A \]
But \(\cos ^{2}A+\sin ^{2}A=1\) then \(\sin ^{2}A=1-\cos ^{2}A\) and the above becomes
\begin{align*} \cos \left ( 2A\right ) & =\cos ^{2}A-\left ( 1-\cos ^{2}A\right ) \\ & =2\cos ^{2}A-1 \end{align*}
Hence
\[ \cos ^{2}A=\frac {\cos \left ( 2A\right ) +1}{2}\]
Let \(A=\frac {x}{2}\) then the above becomes
\begin{align*} \cos ^{2}\left ( \frac {x}{2}\right ) & =\frac {\cos \left ( x\right ) +1}{2}\\ \cos \left ( \frac {x}{2}\right ) & =\pm \sqrt {\frac {\cos \left ( x\right ) +1}{2}}\end{align*}
The sign depends on the quadrant of \(\frac {x}{2}\).