6 \(\sin \left ( \alpha \right ) +\sin \left ( \beta \right ) \)
This can be found by adding (4) and (4A). Let
\begin{align} A+B & =\alpha \tag {7}\\ A-B & =\beta \nonumber \end{align}
Then (4)+(4A) now becomes
\begin{align} \sin \left ( \alpha \right ) +\sin \left ( \beta \right ) & =\left ( \cos A\sin B+\sin A\cos B\right ) -\cos A\sin B+\sin A\cos B\nonumber \\ & =2\sin A\cos B\tag {8}\end{align}
Now we solve for \(A,B\) from (7). Which gives
\begin{align*} A & =\frac {\alpha +\beta }{2}\\ B & =\frac {\alpha -\beta }{2}\end{align*}
Substituting the above in (8) gives
\[ \sin \left ( \alpha \right ) +\sin \left ( \beta \right ) =2\sin \left ( \frac {\alpha +\beta }{2}\right ) \cos \left ( \frac {\alpha -\beta }{2}\right ) \]