9 \(\cos \left ( \alpha \right ) -\cos \left ( \beta \right ) \)
This can be found from (3)-(3A). Let
\begin{align} A+B & =\alpha \tag {7}\\ A-B & =\beta \nonumber \end{align}
Then (3)-(3A) now becomes
\begin{align} \cos \left ( \alpha \right ) -\cos \left ( \beta \right ) & =\left ( \cos A\cos B-\sin A\sin B\right ) -\left ( \cos A\cos B+\sin A\sin B\right ) \nonumber \\ & =-2\sin A\sin B\tag {11}\end{align}
Now we solve for \(A,B\) from (7). Which gives
\begin{align*} A & =\frac {\alpha +\beta }{2}\\ B & =\frac {\alpha -\beta }{2}\end{align*}
Substituting the above in (11) gives
\[ \cos \left ( \alpha \right ) -\cos \left ( \beta \right ) =-2\sin \left ( \frac {\alpha +\beta }{2}\right ) \sin \left ( \frac {\alpha -\beta }{2}\right ) \]