[next] [prev] [prev-tail] [tail] [up]
−e−x2x+y′(x)+2xy(x)=0 ✓ Mathematica : cpu = 0.0133891 (sec), leaf count = 30
{{y(x)→12e−x2x2+c1e−x2}} ✓ Maple : cpu = 0.005 (sec), leaf count = 18
{y(x)=(x22+_C1)e−x2}
(1)dydx+2xy(x)=e−x2x
Integrating factor μ=e∫2xdx=ex2. Hence (1) becomes
ddx(ex2y(x))=ex2e−x2xddx(ex2y(x))=x
Integrating both sides
ex2y(x)=x22+Cy(x)=e−x2(x22+C)
[next] [prev] [prev-tail] [front] [up]