[next] [prev] [prev-tail] [tail] [up]
y′(x)+y(x)cos(x)−e2x=0 ✓ Mathematica : cpu = 0.382991 (sec), leaf count = 39
{{y(x)→e−sin(x)∫1xe2K[1]+sin(K[1])dK[1]+c1e−sin(x)}} ✓ Maple : cpu = 0.112 (sec), leaf count = 21
{y(x)=(∫e2x+sin(x)dx+_C1)e−sin(x)}
(1)dydx+y(x)cos(x)=e2x
Integrating factor μ=e∫cos(x)dx=esin(x). Hence (1) becomes
ddx(esin(x)y(x))=esin(x)e2x
Integrating both sides
esin(x)y(x)=∫esin(x)e2x+Cy(x)=e−sin(x)∫e2x+sin(x)+Ce−sin(x)
[next] [prev] [prev-tail] [front] [up]